AD-A171 589 1/1 F/G 6/6 UNCLASSIFIED END PATE FILMED

!CROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

ź

Water Quality Assessment Dale Hollow Lake and Its Inflows

March 1986

This decriment has been approved for public release and sale; its distribution is unlimited.

5 3 7 5

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY PRACTICABLE. THE COPY FURNISHED TO DTIC CONTAINED A SIGNIFICANT NUMBER OF PAGES WHICH DO NOT REPRODUCE LEGIBLY.

Unclassified

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION P	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2	VT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
Water Quality Assessment	Final Report
Dale Hollow Lake and Its Inflows	6. PERFORMING ORG, REPORT NUMBER
7. AUTHOR(a)	Contract or grant number(*) Contract No. DACW-62-85-M-0757
9. PERFORMING ORGANIZATION NAME AND ADDRESS Water Resources Center, Tennessee Ten Box 5082 Cookeville, TN 38505	Univ.
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
U.S. Army Engineer District, Nashvill P.O. Box 1070, Nashville, TN 37202	March 1986 13. NUMBER OF PAGES iv. 54
14. MONITORING AGENCY NAME & ADDRESS(II different I	
	15. DECLASSIFICATION/DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release: Distribution Unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

This document has been reproduced from the best copy furnished by the sponsoring agency. Although it is recognized that certain portions are illegible, it is being released in the interest of making available as much information as possible.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Lake Inflow Stream Water Quality

20. ABSTRACT (Cantibue as reverse side if necessary and identify by block number)

A survey to determine the quality of the major inflows into Dale Hollow Lake and to evaluate the effect of these inflows on the present and future water quality of the lake. The inflowing streams were to be "screened" under varying hydrological conditions to identify any problem areas.

Water Quality Assessment Dale Hollow Lake and Its Inflows

By:

John A. Gordon
Center for the Management, Utilization, and
Protection of Water Resources
Tennessee Technological University
Cookeville, Tennessee 38505

For the:

Nashville District
U.S. Army Corps of Engineers
Hydrology and Hydraulics Branch
Water Quality Section
Mr. Doug Webb, Project Manager

Contract No. DACW-62-85-M 0757

Table of Contents

Intro	oduction			•	•	•			•							•		•		•						1
Obje	ctives/Pu	rpos	se			•				•																1
Stat	ions and 1	Metl	hod	ls	•					•																2
	Inflowing	~ 61																								2
	Lake Sur																									
Data	Presenta	tio	n -	- г	a]	le	Н	1]	lov	v :	[ní	£10	ws	5					•	•		•		•	•	4
	Flow .																									4
	Temperati																									5
	Dissolve																									
	pH Turbidity																									-
	Conducti																									
	Alkalini																									
	Hardness																									
	Chloride																									
	Sulfates																									7
	Solids																									7
	Nitrogen																									
	Phosphor																									
	Iron .																									
	Manganes																									
	Aluminum																									
	Zinc .																									
	Barium																									
	Calcium a																									
	Cadmium,																									
	Potassiu																									
	Summary		•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	٠	•	•	•	•	•	g
Data	Presenta	tio	n -	- t	a.	le	Н	1	lov	₩]	[a]	кe	•	•		•							•			11
Conc	lusions			•		•								•	•	•		•	•					•		11
Ackn	owledgemen	nts				•		•				•	•		•	•						•				12
Refe	rences																									12

List of Tables

Table 1.	Dale Hollow Inflo	w Sampling Data	13
Table 2.	Dale Hollow Inflo	w Sampling Data	15
Table 3.	Dale Hollow Inflo	w Sampling Data	17
Table 4.	Dale Hollow Inflo	w Sampling Data	19
Table 5.	Water Quality Dat	a for Dale Hollow Lake	21

List of Figures

Figure 1.	Dale Hollow Inflow Rates During 1985	25
Figure 2.	Water Quality in Irons Creek	26
Figure 3.	Water Quality in Eagle Creek	27
Figure 4.	Water Quality in the West Fork Obey River	28
Figure 5.	Water Quality in Big Indian Creek	29
Figure 6.	Water Quality in the East Fork Obey River	30
Figure 7.	Water Quality in Franklin Creek	31
Figure 8.	Water Quality in the Wolf River	32
Figure 9.	Water Quality in Spring Creek	33
Figure 10	. Water Quality in Little Sulphur Creek	34
Figure 11	. Water Quality in Illwill Creek	35
Figure 12	. Water Quality in Williams Creek	36
Figure 13	. Water Quality in Sulphur Creek	37
Figure 14	. Flow vs. Turbidity in Irons Creek	38
Figure 15	. Flow vs. Turbidity in Eagle Creek	39
Figure 16	. Flow vs. Turbidity in Indian Creek	40
Figure 17	. Conductivity of Dale Hollow Inflows	41
Figure 18	. Hardness in Dale Hollow Inflows	42
Figure 19	. Harness vs. Alkalinity for Dale Hollow Inflows	43
Figure 20	. Calculated vs. Measured Hardness for Dale Hollow Inflows	44
Figure 21	. Chlorides in Dale Hollow Inflows	45
Figure 22	. Sulfates in Dale Hollow Inflows	46
Figure 23	. Iron in Dale Hollow Inflows	47
Figure 24	. Manganese in Dale Hollow Inflows	48
Figure 25	. Aluminum in Dale Hollow Inflows	49
Figure 26	. Zinc in Dale Hollow Inflows	50

Water Quality Assessment
Dale Hollow Lake and Its Inflows

John A. Gordon
Tennessee Technological University
Cookeville, TN 38505

INTRODUCTION

Dale Hollow Lake presently has very good overall water quality as evidenced by several reports. EPA (1975) classed Dale Hollow Lake as mesotrophic based upon sampling in 1973 and 1974. EPA (1975) also sampled nine tributaries and the municipal waste flows of Albany and Jamestown. Primary productivity was low and growth was limited by phosphorus and not nitrogen.

Ragsdale and Bulow (1975) classified Dale Hollow Lake as oligotrophic based upon sampling in 1971 and 1972. They based this classification on the appearance of numerous oxygen maxima and uniformly high dissolved oxygen values. The oligotrophoc classification was also the conclusion of Gordon (1976) who used the scheme of Dillon (1975) to classify the lake.

Since Dale Hollow Lake is such a high quality resource, it should be protected and its condition mantained if possible. The Nashville District, U.S. Army Corps of Engineers, became concerned that the current database was inadequate for the streams flowing into the lake and recommended that more information be gained on these inflow streams. Possible threats to the lake include changing land uses such as mining, forestry, agriculture, oil and gas drilling, and urbanization. Thus, a survey of inflow streams and lake water quality was performed during May through November, 1985.

OBJECTIVES/PURPOSE

The purpose of the survey was to determine the quality of the major inflows into Dale Hollow Lake and to evaluate the effect of these inflows

on the present and future water quality of the lake. The objective was to determine if the high level of water quality in the lake is threatened or if it can be expected to continue into the future. In essence, the inflowing streams were to be 'screened' in order to identify any problem areas. The potential impacts were to be screened under varying hydrological conditions.

STATIONS AND METHODS

Inflowing Streams

The stations sampled were as follows:

#1	Irons Creek	Mile	4.4
#2	Eagle Creek	Mile	5.3
#3	West Fork Obey River	Mile	7.5
#4	Big Indian Creek	Mile	0.4
#5	East Fork Obey River	Mile	12.6
#6	Franklin Creek	Mile	0.6
#7	Wolf River	Mile	22.7
#8	Spring Creek	Mile	2.7
#9	Little Sulphur Creek	Mile	4.2
#10	Illwill Creek	Mile	9.5
#11	Villiams Creek	Mile	2.5
#12	Sulphur Creek	Mile	6.2

All streams were sampled at a flowing location just upstream of the reservoir. Access was generally from roads and bridges permitting all-weather sampling.

Samples for laboratory analysis were collected at each location and held/preserved in such a manner as to insure that no degradation occurred prior to analysis. Each sample was tagged for proper identification and all data sets were taken on the same day. Parameters measured in the laboratory were:

Hardness	Ammonia	Cadmium			
Alkalinity	Total Phosphorus	Total Chromium			
Acidity	Iron	Copper			

Chlorides Manganese Sulfates Sodium Total Solids Zinc Dissolved Solids Aluminum Suspended Solids Barium Calcium Magnesium

Nickel Lead Potassium

Kjeldahl Nitrogen

Calcium

Nitrate and Nitrite

Parameters measured in the field were:

Specific Conductivity Temperature Turbidity Dissolved Oxygen Flow

The field parameters of temperature, dissolved oxygen, pH, and specific conductivity were measured with a calibrated Hydrolab Surveyor system, turbidity with a Hach field turbidimeter, and flow with a Marsh-McBirney magnetic current meter. The laboratory analyses were run using currently accepted analytical techniques approved by the Government. Documentation of these techniques is available upon request.

Quality control was assured by proper standardization of all instruments, using duplicate, spiked, and EPA reference samples. The quality control program was documented and the results are available upon request. (Call TTU Water Center, 615-528-3507.)

Surveys were conducted on May 13, June 5, July 16, August 21, September 17, October 7, and November 4, 1985, on the inflow streams. All streams were thus sampled seven times except for Little Sulphur Creek which was not sampled in May.

Lake Surveys

The stations sampled on Dale Hollow Lake were as follows:

Obey	River	Mile	32.7
Obey	River	Mile	27.2
Wolf	River	Mile	8.7
Obey	River	Mile	16.7
Obey	River	Mile	7.8

All stations were sampled at the deepest point in the cross-section at intervals of 1 to 3 meters in depth. Temperature, dissolved oxygen, specific conductance, pH, oxidation/reduction potential, and depth were measured with a Hydrolab Surveyor system. Turbidity was measured with a Hach field turbidimeter, fluoroescence with a Turner Designs Model 10 fluorometer using a flow-through cell, Secchi depth with a Secchi disk, and the light extinction coefficient with a Whitney submarine photometer. The photometer readings were converted to extinction coefficients using a linear regression technique. A 12-volt pump and 3/4 inch hose was used to pump water to the surface. Quality control consisted of proper calibration of all instruments.

Lake Surveys were conducted on July 10-11, August 23, and October 3, 1985.

DATA PRESENTATION - DALB HOLLOW INFLOWS

The data collected during the inflows are shown by Tables 1 through 4. There are 32 columns of data, 12 stations, and 7 sampling periods which produced 2,656 data points. Obviously, these data cannot be explained without the use of data reduction techniques such as plotting.

The data are first summarized by plotting parameter values for each station as shown by tables which follow. Each parameter will be discussed briefly in the following paragraphs. Not all parameters will be summarized with graphs.

Flow

The objective of assessing water quality at varying hydrological conditions was only partially met even though the span of the surveys was increased by two months in order to increase the measurement of water quality

at high flows. It turned out that 1985 was the second driest year on record for Tennessee; therefore, this study was done under low-flow conditions.

Figure 1 is a plot of flow versus station for 1985. Stations 1 through 12 are described under the earlier section on stations. Stations 1,4,6, and 9 all had flows less than 3 cfs during the survey (Irons, Big Indian, Franklin, Little Sulphur Creeks). The stations having the greatest flow variation were 2,3,5, and 7 (Eagle, West Fork Obey, East Fork Obey, and Wolf). The flow in the West Fork Obey was low throughout the survey as Carrithers and Bulow (1973) reported a mean flow at the sampling location of 161 cfs from 1942 to 1968. In a similar fashion, USGS (1985) reported a mean flow of 426 for the East Fork Obey River based upon 42 years of record. All survey flows were below the average at this station. USGS (1982) reported the mean flow of the Wolf River to be 178 cfs. Only one value exceeded the average during these surveys on the Wolf River. USGS (1982) also reported that the principal factor affecting the annual average flow is the size of the drainage basin (i.e. the runoff in cfs/mi² is relatively constant) and that actual streamflow varies with time and place.

Thus, flows during this survey were less than average and only a few stations had widely varying flows.

Temperature

No unusual occurances were observed in the inflow temperatures during the survey at any station.

Dissolved Oxygen

DO was uniformly high throughout the survey at all stations except Irons Creek which had a couple of low DO values and Little Sulphur which had one moderate value.

Вq

The minimum observed pH was 7.3 and the maximum was 8.7. All pH values were within a satisfactory zone for fish and aquatic life.

Turbidity

Some stations had occasional high turbidity levels which were caused by runoff events. Plots of flow and turbidity did not show good relationships. Plots of temperatures, DO, pH, and turbidity at each station as a function of time are shown by Figures 2 through 13. Figures 14 through 16 show the generally poor relationship between flow and turbidity.

Conductivity

Specific conductivity can show the presence of objectionable quantities of dissolved solids. Figure 17 clearly shows that Stations 4,6,8,9,10,11, and 12 have conductivities above 400 (Big Indian, Franklin, Spring, Little Sulphur, Illwill, Williams, and Sulphur).

Alkalinity

Alkalinity was very low in the East Fork of the Obey River as shown below:

5/13/85	10 mg/l	09/17/85	52 mg/1
6/05/85	20 mg/l	10/07/85	22 mg/1
7/16/85	49 mg/l	11/4/85	42 mg/l
8/21/85	77 mg/l		

All other stations had adequate alkalinity at all times.

Hardness

Hardness was high at Stations 4,6,8,9,10,11, and 12 (Indian, Franklin, Spring, Little Sulphur, Illwill, Williams, and Sulphur) with values over 200 mg/l. Values above 500 mg/l were noted at Stations 10,11, and 12. Figure 18 shows hardness at each station and Figure 19 shows that all hardness is noncarbonate hardness associated with Ca⁺⁺, Mg⁺⁺, Fe⁺⁺⁺, and Al⁺⁺⁺ ions. Hardness was also calculated based upon the measured concentrations

of Ca^{++} and Mg^{++} giving the results shown by Figure 20. The narrow range of fit to the 45-degree line shows that hardness is mostly caused by Ca^{++} and Mg^{++} .

Chlorides

Figure 21 shows that chlorides are high at Stations 4,8,10, and 11 (Big Indian, Spring, Illwill, and Williams). Chlorides could originate from oil and gas drilling, springs, or industrial sources.

Sulfates

Sulfates greater than 75 mg/l are often associated with sulfur springs, acid mine drainage, and oil and gas drilling. Figure 22 shows that many stations exceed this value. Stations 1,4,5,6,8,10,11, and 12 all had high sulfate values. Some of these streams are known to have sources of acid mine drainage, most notably the East Fork Obey River (Station 5).

Solids

Most solids were dissolved throughout the survey except when night turbidities were present. Few suspended solid levels exceeded 100 mg/l. High levels of chlorides and sulfates and high levels of dissolved solids were complimentary.

Nitrogen

All nitrogen species were low throughout the survey. This generally indicates a lack of municipal pollution in these streams.

Phosphorus

Most total phosphorus levels were quite low throughout the survey. Spring Creek constantly had elevated phosphorus levels and Little Sulphur occasionally had high concentrations.

Iron

Total iron above 500 μ g/l can be an indication of acid mine drainage. Stations 2,5, and 9 had more than one value above this level. Of course,

spring water also has high iron on occasion. Figure 23 shows the iron values recorded during the survey.

Manganese

Manganese above 500 μ g/l can also indicate acid mine drainage or ground water. Figure 24 shows the manganese levels recorded during the survey. No stations were in excess of 500 μ g/l but high levels were evident at Stations 1,5,9, and 11.

Aluminum

Aluminum above 300 μ g/l can be caused by acid mine drainage. Figure 25 shows that Station 5 was the only station having a value in excess of this. In general, aluminum values declined during the survey period.

Zinc

Most zinc values were below 500 µg/l. Occasional higher values were noted but not repeated. Zinc values also had a tendency to decrease during the survey. Figure 26 shows the zinc concentrations recorded.

Barium

Barium levels were low at all stations with all concentrations less than $7/\mu g/l$.

Calcium and Magnesium

These elements were earlier correlated with measured hardness. The lowest values of calcium occurred in the East Fork Obey River.

Cadmium, Chrome, Copper, Nickel, and Lead

These elements were not detectable during the survey.

Potassium

A few elevated levels of potassium were noted during the survey and are noted as follows:

Station	5/13	6/5	7/16	3/21	9/17	10/7	11/4
9-L. Sulphur	*	1.6	7.9	7.7	10.3	4.5	9.6
10-Illwill	2.6	3.1	3.4	4.3	4.1	3.9	4.6

(Concentrations in mg/l)

Summary

The water quality of the Dale Hollow inflows is discussed by stream in the following paragraphs.

Irons Creek is a small creek having low flows (0.01 to 2.4 cfs). It recorded a couple of low DO values, slightly elevated sulfates, and moderately high manganese. In all, water quality here is good.

Eagle Creek did not show any water quality problems during the survey. It has moderate flow and some turbidity during runoff.

West Fork Obey River is an important, high flow, high quality stream having no apparent problems.

Big Indian Creek is a low flow stream which was noted to have high conductivity, hardness, chlorides and sulfates. A single high zinc value was recorded. This stream had low turbidity, good visual quality, and minnows were always present. Some investigation of its drainage is recommended.

East Fork Obey River is a high flow stream which had problems with low alkalinity, high sulfates, iron, manganese, aluminum, zinc, and calcium. The river is strongly affected by acid mind drainage as reported by Nichols and Bulow (1973). The location of the survey is at a recovery point and bedding sunfish were noted throughout the survey. A grab sample at East Fork Obey River at mile 26.4 (13.8 miles upstream) showed the following characteristics:

Date	EFORM	pН	Cond.	Mn	<u>Fe</u>	<u>Al</u>	<u>50</u> 4	TDS
12/10/85	26.4	2.8	680	2,852	5,940	14,420	249	442
			µmho/cm	μg/l	μg/l	μ g /l	mg/l	mq/l

Obviously, the East Fork Obey River is strongly impacted by acid mine drainage. The lake is spared an impact because of some 6 miles of subterranium drainage between mile 26.4 and about mile 20. A careful analysis of water quality in this stream is in order. All mines are now closed and it would appear that some OSM Abandoned Mine Lands Money should be invested in this drainage.

Franklin Creek is a small stream draining a forested area containing some surface mines on Double Top Mountain. Franklin Creek had high conductivity, hardness, and sulfates during this survey. It was similar to Big Indian Creek except for chlorides.

Wolf River is a high-flow, high-quality tributary of Dale Hollow Lake.

No water quality problems were evident.

Spring Creek is a moderate-flow stream with some water quality problems. Its conductivity was high along with hardness, chlorides, sulfates, and phosphorus. A slime growth was evident during the first several surveys which may have indicated some organic contamination.

Little Sulphur Creek is a low-flow stream which was surrounded with oil wells and storage. It showed problems with DO, alkalinity, phosphorus, iron, manganese, and potassium. More than likely, upstream cattle feedlots and pastures are the source of the problem.

Illwill Creek is a moderately flowing stream which showed elevated levels of conductivity, hardness, chlorides, sulfate, and manganese. The source of these contaminants should be investigated.

Williams Creek is a small spring-fed creek of low base flow. The springs feed the creek just above the sampling point and have a sultur like odor. Some very slight oil residue appears in the creek from adjacent

oil fields. As might be expected, williams has high conductivity, hardness, chlorides, sulfates, and manganese. No real problems are evident, however.

<u>Sulphur Creek</u> is a moderately flowing, high-quality stream with moderate levels of conductivity, hardness, and sulfates. Fish and aquatic life were always present. No problems are evident.

DATA PRESENTATION - DALE HOLLOW LAKE

The data collected on Dale Hollow Lake are presented by Table 5. These data confirm that the lake is a high-quality resource. The water was very clear, few algae were present, turbidity was very low, pH moderate, and conductivity in the low range. Dissolved oxygen was present at all depths except in the Wolf River embayment. Temperature and DO relationships should support the present two-level fishery into the future. No lake-related water quality problems are apparent.

CONCLUSIONS

Dale Hollow Lake is a high quality, nearly oligotrophic lake. Most of its inflowing streams and Rivers are of moderate flow, averaging about 1.5 c(s/mi² of drainage. The Irons Creek, Eagle Creek, West Fork Obey River, Wolf River, Williams Creek, and Sulphur Creek inflows appear to be free of problems. The worst potential problem area is the East Fork Obey River which should be the target of an in-depth investigation of its acid mine drainage problem. Lesser investigations are recommended for Big Indian Creek, Franklin Creek, Spring Creek, Little Sulphur Creek, and Illwill Creek to determine the sources of their problems.

ACKNOWLEDGEMENT

The writer acknowledges and appreciates the invaluable support of Ms. Susan Burns, Mr. Jeffry Curtis, and Dr. Brett Borup, who assisted in the survey.

REFERENCES

Carrithers, R.B. and Bulow, F.J. (1973), "An Ecological Survey of the West Fork of the Obey River, Tennessee, with Emphasis on the Effects of Acid Mine Drainage," J. Tenn. Acad. of Science, Vol. 48, No. 2, April.

Dillon, P.J. (1975), "The Phosphorus Budget of Cameron Lake, Ontario: The Importance of Flushing Rate to the Degree of Eutrophy of Lakes," Limnology and Oceanography, Vol. 20, No. 1, January.

EPA (1975), "Preliminary Report on Dale Hollow Reservoir," National Eutrophication Survey, PNERL, EPA, Corvallis, Oregon.

Gordon, J.A. (1976), "Water Quality Conditions in Dale Hollow Lake" Nashville District, U.S. Army Corps of Engineers Report.

Nichols, L.E. and Bulow, F.J., (1973), "Effects of Acid Mine Drainage on the Stream Ecosystem of the East Fork of the Obey River, Tennessee," J. Tenn. Acad. of Science, Vol. 48, No. 1, January.

Ragsdale, E.L. and Bulow, F.J. (1975), "Possible Effect of Acid Mine Drainage on the Water Quality and Fish Population of Dale Hollow Reservoir, Tennessee and Kentucky," J. Tenn. Acad. of Science, Vol. 50, No. 3, July.

USGS (1985), "Water Resources Data-Tennessee Water Year 1984," USGS Report TN-84-1, Nashville.

USGS (1982), "Hydrology of Area 17, Eastern Coal Providence, Tennessee and Kentucky," USGS Open File Report 81-1118, Nashville.

JALE	9000 0 4	INFLU	SAMPLING	DATA						
ATE	STATIS.	FLOW	TEMPERATURE	0.0.	CONDUCTIVITY	pН			ALKALINITY	at i
an acres	-ME	<u>i</u> f¢	£elcius	mg/1	ma crombo/ca.	ś٠٤٠.	₽₹Ų	mg/l	mg/	ΨĢ.,
5/10/35	. 50MG CB	7.4	19.4	7.4	3 6 5	3.0	Э	206	149	5
5/13, RE	EAGLE OR	23.F	19.5	10.0	237	8.4	5	158	12 6	•
5/13/35	WE DEED	36.)	19.9	9,4	272	8.4	2	136	95	÷
5/13/35	INDIA	3.1	19.9	10.0	644	ā .5	3	20 6	733	ů
5/13/85	EF GBE/	3 19 .0	16.9	9.8	164	7.8	9	75		ř
5/13/95	FRANKLIN	1.4	21.9	8.6	3 73	8.3	3	216	ije	-
5/13/35	wolf a	219.0	21.7	9.1	200	8.5	5	104	72	•
5/13/85	SPRING	20.1	25.0	9.2	442	6.6	4	189	121	
5/13/85	ILLWILL	2.8	25.5	7.7	425	8.2	4	496	130	
5/13/85	WILLIAMS	6.0	24.3	7.7	372	8.1	2	196	130	\$
5/13/95	BULPHUR	1.7	22.4	8.0	429	8.2	15	246	146	9
5/13/95	L.SULPHUR	*	*	*,	**	*	*	×	*	*
6/5/85	IRONS CR	5.4	21.5	5.7	387	7.6	16	249	153	3
6/5/85	EAGLE OR	3.5	21.1	8.2	292	8.6	23	175	127	3 3
6/ 5/85	WE CREY	18.4	23.9	8.1	273	5.6	Ž	160	3 7	
6/5/85	INDIAN	1.2	2:.3	8.3	848	8.1	10	262	148	(
6/5/85	EF 03 E Y	90,0	21.1	8.5	221	7.9	4	120	20	2
6/5/55	ESTAKTIN	3.3	25.5	8.1	422	8.0	27	272,276	116,27	2
6/5/85	AGLE R	40.8	26.1	8.8	240	8.1	7	-40	23	
6/5/85	SPRING	14.9	27.5	9.4	49â	8.7	E - F	229	130	Ũ
	LISULPHUR	₹1	19.9	3.1	477	7.9	7	30€	162	-
6/5/35	المالة الد	3.0	25.5	8.1	1534	3.1	ė	713,710	147	3
6/5/85		0.4	27.2	7.7	464	7.8	3	271	141	3
6/5/85	SULPHUR	0.9	26.5	8.5	538	8.1	4	333	151	į
7/16/85	IRONS CR	661	22.3	3.7	454	7.3	4	263	163	3
7/16/85	EAGLE CR	5.4	22.8	7.6	2 9 0	7.7	25	163	127	ε
7/16/85	ME DBEY	9.3	24.7	7.2	309	7.8	13	165	104	0
7/16/85	INDIAN	0.7	22.3	7.4	1033	7.7	:	250	. 45	į.
7/15/95	ef JBey	132.0	23.6	8.3	272	7.8	5 E	147	49	Ŷ
7/16/85	Franklin	0.2	22.9	8.1	460	7.8	Ę	284	12.	\vec{v}_{i}
7/16 35	40LF 8	16.0	27.6	7.7	30€	7.9	3	165,163	165,167	ز
7/16 85	SERVING	9.1	26.4	8.8	539	8.3	5	222	i 34	Ġ
7/16/85	L.SULPHUR	11.1	25.4	6.8	349	7.8	51	176	142	C
	ILMILL	1.0	25.4	9.3	1509	8.1	13	695	.25	ij
7/16/95	WILL IAMS	461	27.1	7.5	898	7.€	4	3 9 8	157	÷
?/ 16/8 5	Su_PHUR	3.2	27.2	9.2	675	8.8	ť	315	158	Ĭ.
8/21/85	CRONS OR	3.€	20.4	7.5	267	7.7	1:	224	.52	ė
8/21/85	EAGLE OR	54.9	17.3	9.2	187	3.0	3-	.44	114	i
8/21/65	%F ∵3£Y	22.9	21.3	8.4	216	7.9	31	159	100,109	Ĵ
8/21/85	Incian	1.2	20.3	8.8	536	8.0	Ü	229,229	169	\mathcal{E}
8/21/85	EF OBEY	392.6	_3,7	8.7	167	7.5	51	115	77	ŷ
8/21/85	FRANKLIN	0.5	21.7	8.3	369	7.9	19	293	85	į.
9/21/85	WOLF R	67.0	22.4	9.0	153	8.1	5	109	74	Ď
8/21/85	SPRING	19.7	23.7	9.2	393	8.3	7	226	144	0
8/21/85	LISULFUR	(-1	24.5	6.5	368	7.6	51	209	178	9
8/21/85	Idential	1.4	24.2	8.9	1967	7.9	16	609	142	0
8/21/85	WILLIAMS	3.3	25.2	8.2	393	7.6	3	243	133	0
8/21/85	SULFUR	1.6	22.6	8.7	407	9.9	5	261	175,175	C

										14
75		-	15.3	6.5	428	7.6	2.3	260	:63	.;
3 85	Eurici de		14.1	23.6	319	8.0	2.8	180	:52	
9/17/85	P	6.7	17 2	9.2	231	7.9	1.3	.78	.12	
9 7 3-		E.	15.0	9 .9	1297	7,9	1.6	329	154	
3. 7 35	್ ಚಿಕ€್	13.3	చ	9.3	241	7.7	1,3	132,128	52,51	
5 73/65	FRHAK_I'.	J	~.~	9.5	492	7.8	2.5	308	131	à
9/17/65	<u> </u>	26.5	20.6	9,4	290	٤.1	6.3	122	108	
9 17 95	ê ⊳b 146	5.2	18.9	10.7	602	8.5	4,2	259	150	9
9/17/95	5U_F_A	CC2	25.0	9.9	356	7.7	4.4	172	164	
3 17/95	ILLWILL	j.8	19.5	10.5	2100	7.8	3.8	920	161	
9/17:35	U. FT. HWG	(((1)	3.5	6.3	1073	7.4	2.4	5 55	173	ų į
9/17/85	SULFU	1.1	19.5	8.3	857	7.7	34.5	52 5	173	Ę
10/7/85	IRONS OR	8.1	9.1	9. 7	377	8.1	1.4	350	4.35	
10/7-85	EAGLE OF	6.9	8.6	11.1	343	8.2	1.5	258	125	l;
10/7/85	NF JBEY	14.5	11.6	10.2	305	8.1	1.5	193	153	ر
10/7/85	INDIAN	0.6	0.3	10.7	1073	8.1	i.5	179	123	i.
10/7/85	EF OBEY	194.0	12.7	10.0	156	7.4	1.4	325 ,329	177,177	
10/7/85	FRANK_IN	Û.Z	11.4	10.5	518	8.0	2,9	125	22	ij
10-7/85	WOLF R	37.0	13.6	10.6	250	8.0	5.2	313	141	
10/7/85	SPACING	5.3	11.5	11.7	572	8.5	2.4	121 258	36 55	
10/7/85	LISULFUR	1/1	15,1	9.2	37 £ 37 6	7.9	2.4 5.2	256 183	168	
10/7, 85	المال	3.8	13.5	11.7	1958	8.1	3, ê	936 193	135	•
10/7/95	illiAMS		13.4	7.5	665	7,4	2,5 2,4		174	
10/7/35	عز 7 يانې	0.4	15,4	10.8	656	8.0	2.9 3.0	534 500	15.	
		••		1010	000	Q.C	٥,٥	531	177	Ģ
11, 4/35	DONS UP	2.4		3.6	334	7,9	19.5	236	164	ų.
11 1/25	FASLE IN	11.1	41.5	10.3	346	8.0	2.5	200	.78	
11/4-85	JBEY	13.6	12.3	9.9	358	7.9	1	194	.43	9
11/4/35	INDIAN	2.1	11.3	10.2	1092	7.8	1.2	200	181	: 5
11 4/85	EF OBEY	44.5	12.5	9.9	241	7.6	1.0	130,130	42,42	
11/4/35	Franklin	1,4	10.9	10.3	767	7.8	3.3	317	136	
11. 4/85	HOLE 5	28.3	12.1	1972	308	8.8	4.1	172	130	-
11/4/65	SPRING	15.7	10.3	10.6	576	9.0	4.8	261	182	ĝ
4.15	\$10.7.19	$\mathbb{N}_{+}\underline{2}$	10.8	9.2	33 6	7.8	4.9	209	195	9
11.4/35		11.9	16.9	10.6	67 9	0.5	72.0	412	150	
11/4/85	williams	8.6	11.7	9.9	337	7.6	11.0	234	145	5
17/4/85	SULFUA	16.1	12.1	19.1	412	7.7	19.0	289	157	

DALE BULLDE THELDE SHIPLING DATA

û⊷"E	STATE OF	THEORICE	1 - 515 PATT	TAT enti	D DISS. SOLIDS	Chica Col	NOS 1 106			
amiliación		may 1	5 .527# 55 #3/1						AMMUNIA.	TOTAL FAIS
5/13/95		1 3.5	55.7		2.4.5	mg/l 36.8	#3/1 0.1€	mg/1	13/1	**5 22
5/13/85	EHGLE C		18.5		2.4.5 151.9				11	
5/13/85			40.0	172.9					21	47
5/ 13/85		113	42.3 4 6	413.1		9.0		9.40		
5/13/95			₹6 35.3		357.3	55 .8		1.00		
5/13/85				122.8	112	10.8	***	9.19	11	2.5
5/13/85			96.2	29€	264	32 .0	1:.1	0.50 0.62	6 0	12
5/13/85	SPRING		25.4		131.9			0.62	31	26
5/13/65				331	244.2		-		4 0	106
			350	987.7	953.9	3 3.8				
G/15/50	HILLIAMS		ē€. 7	2E8.4	205.1	€3.3	41.4		1.	33
5/13/85			7.16	347.7	276.1	71.6		J.7€	1:10	26
5/13/85	L.SULPHUR	*	`	*	*	*	*	+	÷	*
6, 5/85	IRONS ER		52.6	293.8	279.7	14.1	11.1	0.32	91	ži
6/5/35	EAGLE OR		42.3	216.3	178.4	37 .9		11.1	1:10	55
6/5/85	WE DBEY	9.2	40.1	196.6	162.8	33.8	€.21	0.24		
6/5/95	INDIAN:	163.4	51	574.9	527.5	47.4	0.67	0.40	36	
6/5/95	EF CBEY	5.3	30	313.3	135.7	177.6	0.19	8.16	30	.7 ≟.
6/5/85	FRANKLIN	2.4,2.6	115.5	394.1	291.5	102.6	0.55	5.30	49	4.4 3.7
6/5 /85	AULF R	7.9		170.5	146.9	23.6	0.34	0.23	49	12
6/5/85	SPRING	55.3		336.5					24	218,192
5/5/35	SULPHUR		37.9	348.9		23.4		J.30		
6/5/85	1. Jal 1.	200.5	479.7	1231.9	1164.4	47.5				:5
6/5/35	WILL.AMS		3 8	332.2	127.9	204.3	14.1	0.22		36
E/5/85	SULPHUR		135.5	411	379.7	51.3	43.44 14.5	0.22	23	28 11
					2.24	21.0		0.22		•=
7/16/25	.RONS CR	6.5	96.3	350	337.1	13.3	1+.1	1.33	23	42
7/16/85	EHGLE CR	16.7	34.E	256.2	208.4	47.9		1.05		
7/16/25	WE JBEY	12.3,12.8	49.£	239.6	192.2	47.4			26 26	51
7/16/35	INDIAN	215.4	70.1	695.4	673	22.4		0.50	2 6	01 23
7/16/35	EF DBEY	1.3	a?.7	219.3	209.5	9,8	:1.1	1.14	1:19	4.) 33
7/16 35	FRANKLIN		148.2	362.1	369. 5	1.8	0.15			4 £
7/16/55	MOLF P	13.5	48.3,51.5		221.8			1.39	1:10	51 33,33
7/16/85	SPOING	64.5	60.5	3 8 5.6			3.16	35.0	29.31	33,33
	L.SULPHUR		31		368.2			ა. ნ ნ	5 :	375
7/16/65	HEWILE	105.0	452.8	263.2	250.1	13.1	1.55	0.38		1 i č
	Williams		315.2	1251.3	1137.8	£3.5	ŭ.57	-		4Ē
7/16/85	SULPHUR			729.7	701.8	28.0	it.1	0.36	19	-
17 10/60	אטמרשטט	22,-	230.4,234.	544.6	5 19.5	25.1	lt.1	0.70	53	42
8/21/85	IRONS CR	3.9	54.4	279.9	250.3	29.6	1.22	0.76	Ž:	53
8/21/85	EAGLE CR	5.0	11.1	211.7	162.5	49.2	1.14	0.24		1.5
8/21/85	MF GBEY	3,_	41.4	215.8	190.9	24.9	0.65	0.53	33	40
8/21/35	INCLAS	126,139	45.7,41.8	438.7	42 2.2	16.5	. 25 ,.27	i.65	.8,	15.11
8/21/85	EF DBEY	6.5	67.4	199.9	156.7	43.2	9.59	3.42	18	86
8/21/95	FRANKLIN	2.4	156.8	378.5	361.6	16.9	0.39	0.94	18	27
8/21/85	WOLF R	5.2	30.2	149.4	135.2	14.2	Ú.32	0.93	19	31
8/21/85	SPRING	73.3	51.5	352.1,360.	317.4,328.9	33.1	0.86	0.25	36	112
8/21/85	L. SULFUR	37.7	32.0	333.6	299.8	30.8	1.32	lt,1	372	154
8/21/85	:LLW:LL	183.2	400.3	1113.7	993.9	119.8	0.54	0.83	26	37
8/21/85	WILLIAMS	39.3	137.8	373.6	346.5	27.1	0.12	0.50	12	
8/21/85	SULFUR	22.3	118.0	402.8	393.5	19.3	0.27	8. 56	19	11 27
						4210	A 1 T L	U + JQ	12	i: f

2/4 7 /4-										
3/17/85			93.0	428.6	204.1	122.7	€.12	9.25	72	11
9/17/85			5 8.5	233.6	236.9	2.7	€.44	1.03	68	.8
9/17/85		16.3	60.2	242.3,248.	237.2,249.7	2.2	9.16	. 34	79	17
9/17/85	INDIAN	215.2	100.1,97		810.5	97.3	0.21	8.93	5 8	11 1110
9/17/85	EF 0 8E Y	6.5,7.1	77.6	190.5	188.5	2.0		0.41	27.35	11,1t10
3/17:55	ERANKLIN		169.0	421.0	393.4	27.6	0.11	8.85	40	1:15
9/17/85	WOLF R	12.0	76.5	217.5	208.9	9.6	0.19	1:.1	124	18
9/17/85	SPRING	76.1	78.2	439.7	415.8	23/5	0.46	3.76	39	232
3/17/85	L.SULFUR		17.0	243.0	240.2	2.8	1.50	11.1	91	30
9/17/85	Libili	304.4	839.0	1883.9	1763.9	120.0	0.16	1t.1	207	11
9/17/85	HILLIAMS		398.5	935.4	893.2	42.2	17.1	1.68	140	15
3/17/85	SULFUR	30.0	341.0	809.3	.729.1	86.2	6.30	1.88	51	57
				,, ,,	•			2.00	02	J,
10/7/85	IRONS OR	4.5	68.3	284.8	261.3	22.7	0.12	0.75	37	12
10/7/85	EAGLE CR	14.6	32.2	243.8	227.2	15.8	0.50	0.03	80	34
10/7/85	WF OBEY	10.5	49.1	210.2	199.5	10.7	0.34	0.74	154	1t10
10/7/85	INDIAN	198.2	76.3	752.6	66 7.9 ,	84.7 🖈	0.22	0 .4 9	107	lt10,1t10
16/7/85	EF OBEY	4.5,4.5	53.1,52.4	117.7,119.	111.8,107,2	9.2	4.02	2.16	92,101	1t10
10/7/85	Franklin	5.0	1 69.9	427.7	391.4	3613	0.24	1,14	32,101 37	15
10/7/85	HOLF R	4.5	37.8	159.6	151.9	7.7	3.18	3.56	201	12
10/7/85	SPRING	66.5	91.5	411.0	409.8	1.2	0.86	0.09	274	117
10/7/85	L.SULFUR	18.6	19.7	251.4		10.1	1.14	0.43	409	11. 69
10/7/85	FULWILL	274.2	⁷ 57.6	1620.9	1525.0	95.9	0.16	0.42	156	1:10
10/7/85	MILLIAMS	39.4	205.8	529.8	/ 49 0 .0	39.8	0.10	0.87	204	1110
10/7/85	SULFUR	13.6	218.5	522.6	486.2	36.4	0.14	0.34	158	12
				•	•		V.1.1	0157	100	
11/4/85	irûns or	3.9	49.2	260.8	239.0	21.0	3.15	0.30	26	29
11/4/95	eagle cr	11.6	32.6	240.2	233.9	5.3	0.44	0.29	3.7	23 23
11/4/85	af JBEY	16.8	53.5	252.5,250.	234.8,239.8	14.4	0.29	0.03	48	23 1:10
11/4/35	INDIAN	159.8	70.9	732.6	676.0	56.6	0.54	0.13	33	1113
11/4/95	EF UBEY	5.9	76.2	195.2	175.7	19.5	0.20	8.20	43	it10,1t10
11/4/85	FRANKLIN	1.8	148.8	363.3	357.4	5.9	0.14	0.94	19	1:10
11/4/85	WOLF R	11.1	45.4	215.4	205.3	15.1	0.16	0.21	45	1.10
11/4/85	SPRING	59.3	63.1	410.8	391.0	19.0	1.0,1.1	0.59	43	312
11/4/85		24.5,24.0	33.9,33.0	302.3	270.8	31.5	1.60	1.23	235,231	312 319
11/4/85	[LLW]_LL	77.3	403.2	555.4	486.5	63.9	0.73	ύ.89	99	158
11/4/85	HILLIAMS	32.5	106.2	253,7	246.1	7.6	0.15	ე. 3 3	25 25	136
11/4/65	SULFUP	7.7	116.2	321.0	295.1	25.9	0.27	17.61	2∃ 48	
						2017	0127	14.01	40	16

ભા	alice W	I VELEKI						
247€	3747174	IRON	MANGANESE	MULUGE	ZINC	ALLMINEN	BARILM	CALCIUM
THE Odd LT	3.441E	3	45.4	~9/1	ug/l	ug/1	ug/l	mg/1
5/13/35	PONS IR	164	4]	3.6	237	850	33	76 .5
5.13/E5	FAGLE UF	€26	41	5.7	244	1000	27	1.5
5/13/35	AF CBEY	.05	34	4.2	109	590	19	42.3
5/13/85	INDIAN	511	88	δυ . 6	1682	2740	29	77.6
5/13/85	EF DEEY	424	092	2.2	80	620	25	20.6
5/13/85	FRANKLIN	222	4 ?	1.7	89	310	17	63.7
5/13/85	WOLF R	1085	7.5	3.9	494	1520	37	39.4
5/13/85	SPRING	818	3 2	24.8	25 0	1040	. 29	60.9
5/13/85	ILLWILL	91	53	84.0	76	11100	39	128.3
5/13/85	WILLIAMS	456	46	9.6	249	1990	18	e6.5
5 /13/85	SULPHUR	251	48	6.4	121	590	20	71.2
5/13/85	L.SULPHUR	*	*	*	*	*	*	*
6/5/5E	TRONS CR	2202	106	5.0	371	181 9	36	74.5
6/5/85	EAGLE OR	542	4 č	6.4	109	560	جہ	50.€
a/5/35	ME OBEY	109	19	6.0	62	460	20	42.9
6/5/35	INDIAN	151	15	90.5	59	760	3 9	ϵ^{-} . ϵ^{-}
€/5/65	EF OBEY	1764	437	3.8	814	3380	31	39.4
6/5/85	FRANKLIN		60	2.2	206	470	22	76.1
6/5/ 65	YĞÇE K	345	3 6	5.1	188	570	5(39.2
6/5/85	SPRING	56	19	31.4	5 72	It100	32	65.1
€/5/85	SULFHUR		48	6.3	183	500	34	82.6
6/ 5/85	ILLHile	453	55	127.2	169	250	46	179.9
5/5/95	MILLIAMS		16	13.1	183	1:130	27	70.4
6/5/8 5	SULPHUR	238	19	11,1	172	279	27	86.5
7/16/35	IRONS OR	223	277	7.0	167	1:100	45	83.9
7/16/85	EAGLE CR	261	54	7.3	43	210	32	51.7
7/16/85	WE DBEY	103	36	8.7	2 7	¥60	27	50.0
7/16/35	INCIAN	36	16	126.0	273	1t100	41	80.4
7/16/85	EF 0 8E Y	49	127	5.2	118	210	35	44,5
7/16/ 85	FRANKLIN		16	2.6	129	1:100	2t	83.2
7/16/85	MOLE 8	115	4.7	7.7	132	17100	77	50.1
7/16/85	SPRING	56	49	39.7	71	1:100	3£	66.0
7/16/85	L.EULFHUR		135	8.1	19	229	51	54.7
7/16/85	incomittee	107	35	128.8	31	11100	43	183.0
7/16/85	WILLIAMS		320	49.1	38	1:100	69	133.8
7/16/85	90.,P402	64	23	17.3	143	1t100	32	111.2
8/21/35	IRONE CP		24	3.9	21	1:100	32	68.2
8 /21/85	EAGLE OF		52	3.6	22	130	29	47.3
8/21/85	HE DBEY	* 1.	92	5.2	29	240	21	47.5
8/21/85	INDIAN	30	1 t1	66.3	18	1t100	27	70. 7
3/21 /85	EF OBEY	51 7	374	4.9	33	3 3 0	41	34.5
8/21/85	FRANKL IN		38	2.2	32	110	26	85.0
8/21/85	WOLF R	149	37	3.3	59	11100	42	34.€
8/21/85	SPR ING	25	26	32.5	39	1:100	32	67.2
8/21 85	LISULFUR		186	20.1	78	11190	59	56.6
8/21/85	ILDII	153	37	51.9	65	11100	40	162.0
8/21/85	MILLIAME	24	13	18.2	79 70	1136	28	73.9
8/21/85	SULFUR	25	25	8.1	69	11100	27	86 3

3 2 35	TONG 18	j.	ðî	6.4	2 21	14,36	41	76, <u>q</u>
9:17/c+	£Au.∃ ∰	13		8.9	156	1:100	31	5 3/3
9 /17 85	: :: <u>:</u> :	32	25	12.2	161	1:130	26	53.3
9/17:95	: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	8	10	181.3	123	1:100	42	38.9
9/17/85	FF 152"	39	57	5.4	38	.+100	32	39.8
9 17/65	FRHNKLIK.	4:	21	3.6	239	1 t1 90	23	85.4
3 1 795	MILE F	116	44	8.1	511	1:100	72	51.5
9, 17, 35	SPR146	59	25	49,8	215	1 t 100	39	75.4
8,17735	1.50% FUR	32 9	162	8.8	241	11100	58	54.7
3 17/95	The state of	71	30	200.8	254	1t108	57	269.8
3/17/35	AILLIAMS	51	181	66,5	115	11100	77	167.3
9/17/85	ENLEUR	472	€8	27.7	145	255	53	148.4
10/7/95	120NS OR	4:	15	4.5	7	1 t 10 0	34	65.3
10/7/35	EPOLE CR	42	145	9.8	7	1:100	32	56.9
10./7 65	WE OBEY	21	10	7.5	115	102	25	49.9
10,7795	MOTAN		1 t 5	139.4	1t5	11100	3 7	85.7
10/7/85	£೯ ೨₿€°	64	246	4.0	1:5	1t100	32	22.8
10/7/85	FRHAKLIN	37	16	3.0	1:5	11100	27	91.2
10/7/95	10_F B	27	12	5,2	1t5	11100	47	36.0
10/7/95	325 JVG	33	11	38.0	1t5	1:100	39	73.3
19/7/85	L. BULFUR	247	94	8,4	1:5	14100	5 3	59.9
10/7/35	Leading	36	1.7	179.2	1t5	11100	54	241.1
10/7/95	ALC. AMS	3 7	115	27,8	115	11166	45	196.8
10/7/85	\$J(F)#	37	24	15.5	115	11100	40	136.8
11/4/85	DRIGNE DR	297	28	3.3	1t5	102	29	59.7
11/4/35	EAGLE (F	3	Ė	8.5	115	.*130	28	97.2
11/4/85	HF JBEY	28	12	11.4	115	1:100	25	53.3
11/4/85	INDIAN	13	1t5	141.2	1t5	1:100	32	79.3
11/4/85	EF 08EY	2.	164	5.7	9	1:100	30	35.7
11./4/85	FRANKLIN	92	1€	2.3	115	11100	24	81.6
11/4/35	walf a	64	11	7.3	115	1:100	56	48.
11/4, 55	Sbb 14/2	79	19	42.6	1:5	1:100	35	?2.1
11 '- 85	L.SULFUR	י99	109	10.2	115	295	48	80.5
11/4/85	Themile	455	55	43.0	115	445	32	88.2
11, 4, 85	MILLIAMS	134	29	8.5	1:5	11100	20	53.6
11/4/85	53_5d₽	181	34	5.3	145	136	29	69.7

-	-		_			
٠,٠	.:	٠.,	- 4	Nº Ja	EAMP LING	0474

DATE		MAR ERICH	DAU PU M	Chechin	COPPER	NICKEL	LEAD	PCT#3\$1 0 1
M Y (1) 01		ភាព្ធ :	u 🖺 🔒	ug/⊥	ug/1	ug/1	ug/1	ag/1
5.13/35			./1	1:5	1t5	1150	1:10)	
5/15/85	337	12.4		15	1:5	1 t 50	11100	0.4
5 .3/35	JE (ED)	**	1:1	1:5	115	1t50	11100	
5 13/85	Ing John	37.5	1.	115	115	120	11100	Ů.6
5/13/35	15 35E:	5.6	111	1+5	1t5	1 t 50	1t100	
5/13/95	ERHALL Y	14.5		115	1:5	1:50	1t100	
5/13/85	ABLE R	13.5	1:1	26	1 t 5	70	1t100	
5/13/85	SPRING	17.€	itt	24	17	1150	11100	1.6
5/13/85	il kil	29.3	!ti	1:5	i t5	1t50	1t100	2.6
5/1 95	KILLIOMS	19.9		1:5	115	1 t 50	11100	8.7
	يزل عد _ا لزي		.11	1:5	1t5	1:50	11100	0.8
5/13/85	SULPHUR		+	*	*	*	*	± €
					Ŷ	•	^	ì
ಕ್ರ/ಕೈ ಕ್ರಕ	្រសួរ ស្រ	23.3	1.1	35	1 t5	6 0	11100	2.0
0 5 15	J-12.2	> <u>#</u>		1.5	26	1:50	11100	1.2
6/5/25	738E	3.5	• 1	1:5	1t5	1 t 50	11193	3.6
6/5/65	NE AN	12.7	1.	115	6	1:50	1:100	3.6 3.4
	36 365			18	1:5	140	1:100	3.8
	FRANCIN		ltl		1t5	140 1 t 5 0		0.9
5/5, 85			· · ·	ن 7	1t5	1 t 50	1t100	
6 5/95	ins IMT	3.4 12.1	• •	115	1(5 1(5	1150	11100	
6/5/85	1,40 1,40 1,40	.8.5	• 1 • 1	11	1t5		1t190	
6/5-25	lum'lu		-1 	11 115		1:50	1t100	1.6
6/5/85	ALLY DE				1t5	1t50	1:100	3.1
6/5/35	SULPHUR			1t5	1t5	1:50	1:130	0.3
Q 3/3.	SULTHUR	20.3	111	115	1:5	3 :50	14100	0.5
7/16/55	FRONS OR	15.6	111	115	115	1:50	11100	1.8
716/85	EAGLE UP	8.€	1.1	115	145	1 t 50		
7/16/85	AF JBE	10.6	1 • •	1t5 1t5	1:5		1:105	
7/16/85	INDIAN		11	1t5		1:50	1410	1.0
7/16/35	27 03EY				1t5	150	14161	1 5
7/16/65	ر المان المان المان المان ال		lti lti	115	:t5	j.50	1:100	6.3
7/16/65	40_F R			145	1:5	1:50	1 1: 00	
7/10/85	PAIRS		111	1t5	1:5	-50	1:103	
7/16/15	3751 Hile 2451 Hile	- 4 - 6	111	1:5	1t5	1:50	1:100	
	50 <u>0</u> , 40		111	115	112	1:50	itt#65	3
7/16/85	e entre entr		1t1	115	115	1:50	1+100	3 :
7/16/35	ALLC: HIS		It1	115	115	1:50	.t100	
7/1 <i>6/3</i> 5	1.34,7		iti	115	1 t 5	1:50	14100	1.1
3 21 35	(96NS-78		1 4 4	1.6	٠٠			_
8/21 65	EAGLE OF		111	1:5	115	1:50	1:110	<u>.</u> 5
8. 21. 35		¢.7	. † †	115	1t5	1 t 50	11100	, S
	AF [8E]	5.5	• • •	115	1t5	1 t 5 û	1:10%	. · 5
8/21/85	74-1311 Van 30	.3.€	1:1	115	1t5	1 t 5 û	1:106	* • • •
8/21 '85 9/21 '85	EF JOE J	€.1	1	1:5	1t5	± t50	11100	2
8/21/85 0-31/85	FRANK IN	18	111	1:5	115	1150	1 t100	• •
8/21/85	ADL: R	5,9	it.	115	115	_t50	1:100	
3/21/85 5/21/85	SFF ING	12.5	111	115	1t5	1:50	11100	ó
8/21/85	. Soufur	13.5	1:1	115	lt5	1:50	1:100	7.7
8/21/35	Libill	36.4	iti	115	1 t 5	1 :5 0	1:100	4.3
3/21/85	MILLIAMS	15.8	1:1	115	1 t 5	1 t 5 û	1:100	1.3
8/21/85	SULFUR	20.6	1:1	115	115	_ t50	1:103	1.0

3/17/85	IRONS IF	.3.2		1:5	1.5	1:50	lt.50	2.9
9/17/85	EMBLE TR	10.1	1+5	1t5	1 t 5	1:50	1 t 105	1.4
3, 17, 85	# 185°	12.7	. • 5	1t5	1tJ	1159	1t100	1.0
9/17/85	100 (4)	23.≐	1t5	i t5	1t5	1:50	1:100	3.4
9/17/05	ST JBEY	3.3	. :5	1:5	1t5	1:50	1:100	1.5
9/17/65	reflek No	21.5	1:5	. (5	I t 5	1:50	1t100	1.3
9/ 7 85	MILE S	13.3	1:15	1:5	115	1 t 50	11163	1.2
9/17 35	SPPING	17.0	145	1 t 5	1t5	1:50	11106	- 1
3/17/55	Scc∓yR	19.0	1.5	1 t5	1:5	1:50	1t100	14.3
9/17:85	المارة المار	63.0	1t5	1t5	145	1 t50	1t100	- 1
3/17/35	WIW	5	1:15	1 t 5	1t5	1150	it100	. 8
9/17/55-	SULFUR	33.9	1:5	115	1:5	1 t 50	1:100	
10/7/35	ARIAS OR	13.4	115	1:5	1t5	1t50	1:100	1.8
13/7/65	EAGLE IR	13.3	it5	1t5	1t5	1 t50	11190	1.8
10/7/35	HE DBEY	10.4	£t5	1t5	1t5	1:50	11100	1.3
10.77, 85	INDIAN	20.2	j t5	1t5	1t5	1 t 50	11100	2.0
10/7/35	EF GBEY	5.6	115	1t5	115	1:50	11100	1.3
10/7/35	FRAIKLIN	21.3	115	1t5	1t5	1 t 50	1t100	1.6
10/7/35	70Fa 8	7.5	∡t5	1t5	1:5	1 t 50	1t100	1.4
107 7 /85	BPR ING	15.8	1t5	1 t 5	1t5	1 t 50	11100	2.2
10/7/85	_,SULFUR	12.8	1t5	1:5	1:5	1t50	1t100	4.5
10/7/25	ILLWILL	57.5	1.15	1t5	1:5	1t50	1t100	: 9
10.77/85	WILLIAMS	21.3	1+5	1:5	1:5	1 t 50	11160	9
10/7185	322508	25.9	1t5	1t5	1t5	1156	11100	1.7
11:4/85	1900/8-09	11.2	.t5	115	115	¥150	1:100	1.6
11.74/115	540 £ 00	10.9	1:5	1t5	1t5	1:50	itiŭi	: 5
11/4/65	AF CREY	12.0	145	115	1:5	1:59	It100	
11/4/85	indian	15.0	115	1+5	!t5	1 t 58	1:100	2.4
11/4/85	EF DBEY	8.2	115	1t5	115	1:50	1:100	_ 3
11/4/85	Fraiklin	13.2	115	. t5	1t5	1:59	1:100	2.2
11/4/85	WOLF B	10.2	115	⊾ ₹5	1t5	1:50	1:100	1.1
11.4/85	SPAINS	15,4	.15	145	1t5	1:50	1:190	2.5
11/4/85	L.SULFUR	11.3	1t5	1t5	1t5	1:50	1:100	3.6
11/4/85	1446122	19.9	1:5	1:5	115	. t50	1:100	4.6
11/4/85	WILLIAMS	12.7	115	1:5	115	1 t 50	11100	1.3
11/4/85	SULFUR	15.8	115	1t5	115	1t50	1:159	3.8

Table 5. Water Quality Data for Dale Hollow Lake, 1985

J-1	-12. Ja	.Añē	DATA	1985							
197E	5 A . N		EMP	0. 0.	CONC.	ρH	ORP	TIREIDITY	FLUORGES	* * * * * * * * * * * * * * * * * * *	11:50 D
100 5			Calcius	mg/1	mmho/cm	•	muolts	FT)	CENTE		
AL 15	32.7		29.1	8.1	180	3.2	267	• •	1.4	<u>.</u> 1	
		2	27.6	8.2	16.	8.1	274	4.4	1.4		••
		4	26.6	8.4	162	3.2	276	4.2	1.5		
		Ė	25.5	7.4	16 6	7.7	294				
		5	22.2	4.1	205	6.9	336	÷.5	į		
		i.	14.3	4.1	141	7	341	5.4	1.6		
			1.9	3.5	134	7.1	342	•	1.5		
		. 4	11	3.3	131	7.1	341	5,5	1.4		
			10.6	3.3	131	7.1	341	5	1.4		
		18	10.5	3.3	130	7.1	342		1,4		
		13	10.9	3.1	127	7.4	333		1.4		
		4.5	.012	3.1	167			2.0	1.4		
JUC 10	79M 37.7	•	27.9	8.2	172	C.I	255	.	-	2.1	4,42
		4	27.5	8.3	167	მ.3	875		1,4		
		:	20.5	8.5	165	9.3	258	7	1.5		
		6	35.6	8	160	8.1	272	= 3	1 1		
		÷	20.8	€.3	172	7.2	316	-	∠.€		
		13	13.6	6.6	147	7.2	324		2		
		12	11.5	5.4	131	7.2	325				
			10.7	4.8	133	2.3	327		1.4		
		È	.7	4 5	132		320	2 8	* E		
		16	13.2	4.5	132	7.3	325	- 4	 • ·		
		26	10	4.3	131	7.7	323	4,7	3		
		22	10	4	133	7.6	321	5	1.2		
		24	10	3.7	130	7.7	318	€.8	1.3		
JHL 4 10	₩9M 9.7	3	28.1	8.7	505	8.5	228	3.7	1.5	2.1	589
	••	Ž	27.5	9.1	200	5.6	225	3.8	1.4		
		4	27	9.3	193	8.6	223	5	1.6		
		6	26.2	5.3	20(8.5	228	4	2.3		
		£	21	0.5	218	7.1	300	4.4	2.7		
			15.2	1.6	179	7.3	30 9	5,E	1.5		
		.2	12.1	9.8	.63	7.4	:08	7	1.5		
		1.	11.7	0.2	153	7.6	306	5,5	1,4		
			11.7	9.2	160	7.8	364	9.3	2,4		
			- 4 1	3.2	150	· • ©	304	. J	417		
JA 1	18	•	6.4	8.2	176		2 63		: .5	. Ar	379
		٤	26	8.3	165	8.4	228	3.1	d∎€		
		Ċ	; · . 4	9.4	147	9.4	229	2.5	6.2		
		7	13.1	3.5	150	8.4	230	1.2	1.5		
		10 11	1	11.9	134	€.2	246	₹.2	2.5		
		::	* * * *	3.3	130	7.7	293	2.6	1.3		
		€		7.9	129	7.6	297	3.2	1.1		
		1.3	3.3	7.2	129	7.6	298	2.6	0.3		
		22	9.4	6.5	127	7.6	297	2.5	٦.٤		
		25	G :	5,2	124	7.6	295	3.1	9.8		
		28	8.7	5.2	121	7.9	287	4.5	9.7		

Table 5 (continued)

A	24 27 30 36 36	25.5 24.2 27.4 28.8 21.4 9.8 9.4 8.9 8.4 7.5	8.1 5.4 10.4 13 12.5 10.4 8.6 8.5 8.1 7.6 6.8 6.3	178 165 167 157 151 118 115 113 114 116 104 113 115	8.3 8.4 3.7 8.6 7.7 7.4 7.4 7.4 7.4 7.5	234 235 228 222 234 276 287 286 288 288 299 294	2.5 2.4 3.8 5.5 4 2.5 2.5 2.5 2.5 2.5 2.5	2.5 2.5 2.5 2.6 2.5 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	•	. 142
August 33 (28/4/32.7)	7 24 4 6 10 5 4 10 pg	25.9 25.7 25.6 25.4 29.4 13.9 13.9 14.7	7.5 7.4 5.9 5 5.4	203 199 196 191 201 184 160 154 154	7.3 7.7 7.6 7.4 6.3 6.3 6.3 7.1	280 222 222 245 245 262 271 274 274 274 273	2.6 2.6 2.6 2.6 2.6 2.6 3.6	0.8 0.9 0.9 0.9 0.5 0.5 0.5	1,07	5.5E
ALGUST 23 ORM 27.7	3,5 1,5 3 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	25.8 25.6 25.4 25.2 22.9 16.2 10.4 11.7	7.7 7.7 7.7 7.3 2.2 1.7 0.9 0.9 1.1 1.2	191 188 185 185 190 007 170 160 150 150 146 140 137	8 8 9 7.3 6.3 6.5 7.1 7.2 7.3	216 219 217 205 231 277 278 277 275 273 270	2.1 2.1 2.2 2.2 2.3 2.3 2.3 2.3 2.3 2.3 2.3 2.3	0.76	3.35	9.428
ACQUETT DE LANCIE.	1246	27 (15.6 25.7 25.7 24.2 18.3 18.9 18.3	7.5 7.6 7.8 7.3 2 0 3	220 222 222 220 246 231 185 132	8.1 8.1 7.9 7 6.9 7.2 7.2	175 174 168 169 152 2 -46 -10	4 10 2 2 2 3 6 F 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1.0 1.0 1.0 1.0 1.0	3,95	512

Table 5 (continued)

		25.3	3.4				_	, -		
		26,7	3.1	155	9.2	234	1	1.3	4 57	333
	•	25.7	6.2	182	8.2	204	1.2	1.4		
	7	25.2	8.2	175	6.2	204	1.4	1,4		
	5	25	8	174	8.1	211	.5	2.5		
	11	17	9.2	176	7.4	254	3	4		
	1:	12.2	6.4	157	7,2	289	2	2.6		
	17	.0.3	4,9	150	7.2	269		1,4		
	20	20.1		145						
			4.1		7,2	265	<u>.</u> ,			
	53	10	3.2	136	7,2	264	ند، ب	2.8		
	46	9.6	2.8	131	7.3	262	1.2	Ġ		
	29	9.3	2.5	123	7,4	259	414	i		
	52	2.1	2.4	120	7.9	254	1.1	2.4		
ASGUST 25 (35% 7.3	ý	26.9	g	181	9 1	212	1.5	1	3,34	34,1
	3	25.8	8.1	178	8.1	213	1.4	1.2	21.5	. 7,
	6	25.4	8.2	170						
					8.1	216	1.4	1.5		
		24,_	7.2	173	7.4	247	3,4	1.7		
	-5	15.4	9	160	7,4	393	1.3	1.3		
		11.7	7.9	150	7.3	270	1.5	1.4		
	13	16.7	7.1	140	7.3	270	1.3	1.2		
	2.	10.1	5.6	139	7.3	270	1.3	1.3		
	24	9.6	5.7	126	7.2	269		1.2		
	בי	9.2	4.8	126	7.2	263	2	1.6		
	30	5.9	4.2	116	7.3	267	2,4	1.2		
	33	9.5								
			3.6	117	7.4	563	2.5	1.1		
	36	8.4	3.5	105	7.5	263	2.2	1		
	39	8.4	3.2	162	. 6	26:	2. 9	0.3		
OCTOBER 3 CAM 30.2	:	26.19	7,1	191	7,4	272	1.1	0.65	3.05	s venin
	5	20.5	7.1	182	. 4	67		9.7°		-
	4	20.3	7.1	180	^.4	268		ે.€5		
	ε	20.8	7.1	182		264	٠.٤			
	8	20.3	7.1					. 65		
	9			186	7.4	2 59	3.2	0.65		
		20.	7.1	180	7.3	250	3	ા.€5		
		20.6	7.1	182	7.3	235	2.9	0.65		
	12	20.1	3,6	185	€.8	218	4.4	6.48		
	. 4	16	0.1	187	6.8	156	4	0.65		
	ΞĒ	. ž. T	Ü	176	7	126	4.2	9.7		
OCTOBER 3 (TAP TO T	:	20.7	7.52	156	7,5	278	2.5	:	3,4€	:
-	3	26.6	7.52	165	7.5	277	2.		2.55	45
	:	26 6	7.55	165			£.	•		
	7				7 .5	273	2.5			
		20.5	7.52	166	7.5	271	î sê			
		20.4	7.51	168	?.5	266	٤٠\$	1.2		
		20.2	7.57	163	7.4	25 3	2.3	0.8		
	13	15.1	Û	165	6.7	286	1.4	0.35		
	4.		:	152	6.8	288	2.5	0.7		
	17	12	Û	156	6.3	296	2.4	0.75		
	_9	11.5	ê	155	6.9	291	2,35	0.7		
	21	11.4	ò	150	6.9					
	23	11.4	0			293	2,4	Q.7		
	دع	44.44	IJ	150	7	294	2.5	∂.85		

Table 5 (continued)

1.581 1 14.9,2		20.3	7	215	7.3	195	3.6	1.5	· , +-	,
		20.5	7	205	~ . 5	193	3.4	• .		
	:	25.5	7	198	7.5	189	∴.4	1.6		
	7	∠, 4	7	200	7.5	185	3.3	1.6		
	9	20.3	7	198	7.5	175	5.8	1,65		
	<u>!1</u>	19.7	6.2	215	7.3	159	5. 65	1.55		
	13	14.2	ę	178	6.9	-82	6.5	4.3		
	15	12.8	0	182	6.∄	~8€	6.1	3		
	. 7	1 - 4	ð	180	7.9	-36	4.3	2.4		
00708ER 3 GRM 16.7	Û	20.4	8.2	146	7.8	21 a	1.5	0 .6 5	*	1.5e=
	3	20.3	3.3	133	7.8	229	1.5	ů.7		
	Ė	20.2	8.2	132	7,9	219	5	0.65		
	10	20	8.3	135	7,7	221	1.4	ÿ.6		
		18	€.4	11€	7	250	7.2			
	.4 .7 .2	22.5	3.4	110	6.9	250	6	0.5		
	2.	10.8	2.7	107	6.9	246	6	0.4		
	23 76 73	10.2	1.7	115	6.9	241	3.6	0.35		
	76	9.0	0.8	88	6.3	241	4	0.3.		
	. 4	3.4	3.7	32	5.9	142	- 2	3.2		
	3.5	9.1	0.3	83	7	249	1.4	6.4		
OCTOBER 2 DRIVING		21	8.3	157	7.8	227	1.5	6.8	F,49	
	3	21.3	8.3	13€	7.5	227	. 7	0.8		
	é	20.9	3.3	132	7.3	228	2	0.7		
	9	20.7	8. 3	132	7,7	229	1.85	0.6		
	12	20.5	8.2	132	7,7	235	2.7	0.5		
	15	13.9	6.8	125	7.1	268	2.2	0.5		
	18	11.4	6	124	7.1	268	1.5	8.4		
	22	19.4	4.8	124	7.1	26.	1.3	ù. 35		
	26	3.3	3.9	120	7.1	265	2.4	0.3		
	30	3.4	2.9	116	7.4	264	2.9	0.3		
	34	8.8	2	120	7,1	264	3.1	0.3		

DALE HOLLOW INFLOWS

25

STATION
Figure 1. Dale Hollow Inflow Rates During 1985

J A GORDON

DALE HOLLOW INFLOW

IRONS CREEK 1985

Figure 2. Water Quality Irons Creek, 1985

J A GORDON

1985 EAGLE CREEK

Figure 3. Water Quality in Eagle Creek, 1985

J A GORDON

W. F. OBEY RIVER 1985

DALE HOLLOW INFLOW INDIAN CREEK 1985

Figure 1. Water Quality in Big India: Cheek,

DALE HOLLOW INFLOW E. F. OBEY RIVER 1985

Figure h. Water Quality in the East Pork Obey Piver, 198

FRANKLIN CREEK 1985

Figure 7. Water Quality in Franklin Greek, 198

U A GORDÓN

DALE HOLLOW INFLOW WOLF RIVER 1985

Figure 6. Water Quality in the Wolf Remer, 198

DALE HOLLOW INFLOW SPRING CREEK

SPRING CREEK 1**98**5

Figure 9. Water Quality in Spring Crock, 198

DALE HOLLOW INFLOW L. SULPHUR CREEK 1985

Figure 10. Water Quality in Little Fulch o Creek, o

ILLWILL CREEK 1985

Figure 11. Water Quality in Illwill Creek, 1985

WILLIAMS CREEK 1985

Pigure 12. Water Quality in Williams Creek, 1985

DALE HOLLOW INFLOW SULPHUR CREEK 1985

IRONS CREEK FLOW/TURBIDITY

Figure 14. Flow vs. Turbidity in Irons Creek

DALE HOLLOW INFLOW EAGLE CREEK FLOW/TURBIDITY

39

Figure 15. Flow vs. Turbidity in Eagle Creek

INDIAN CREEK 1985

Figure 16. Flow vs. Turbidity in Indian Creek

. A GORDOD

DALE HOLLOW INFLOWS CONDUCTIVITY 1985

Figure 17. Conductivity of Dale Hollow Inflows, 1985

4.7

HARDNESS 1985

Figure 18. Hardness in Dale Hollow Inflows, 1985

DALE HOLLOW INFLOWS ALKALINITY VS HARDNESS

Figure 19. Hardness vs. Alkalinity for Dale Hollow Inflows

44

Figure 20. Calculated vs. Measured Hardness for Date Hollow Income (Based Upon measured Calana Ma)

CHLORIDES 1985

Figure 21. Chlorides in Dale Hollow Inflows, 198:

DALE HOLLOW INFLOWS SULFATES 1985

IRON 1985

Figure 23.

43

MANGANESE 1985

Figure 24. Manganese in Dale Hollow Inflows, 1985

ALUMINUM 1985

Figure 25. Aluminum in Dale Hollow Inflows, 1985

ZINC 1985

Figure 26. Zinc in Dale Hollow Inflows, 199

J A GORDOM

